Another possible origin of temperature and pressure gradients across vanes in the Crookes radiometer

Kazuki DENPOH

Aug 18, 2017

K. DENPOH, 58th Symp. Vac. Soc. Jpn, Yokohama, 2017, 2P01

The Crookes Radiometer [1,2]

- 4 vanes in a glass bulb partially evacuated.
- One side of vane is black and the other side is shiny.
- Vanes revolve with shiny side leading under sunlight.

Past Simulation Studies [3-10]

- Great efforts made by many researchers to reveal forces on vanes
 - thermal transpiration / thermal creep force due to ΔT
 - area force by Δp
- Assumptions used in every work
 - temperature at black side of vane is higher than that at the shiny side, $T_{\rm B} > T_{\rm S}$.
 - accommodation coefficient α is uniform and same at both sides of vane.

New Hypothesis proposed in This Study

- Vanes is **isothermal at** $T_{\rm V}$.
- Accommodation coefficient $\alpha_{\rm B}$ at black side of vane is different from that at shiny side $\alpha_{\rm S}$, and $\alpha_{\rm B} > \alpha_{\rm S}$.

Estimating Vane Temperature

Heat balance equations under Biot number $Bi \ll 1$ •

$$\begin{cases} q_{\rm in} - (q_{\rm g,B}^t + q_{\rm r,B}^t) = -\kappa \frac{\partial T_{\rm V}^t}{\partial x} \\ \rho L_{\rm b} C_{\rm p} \frac{\partial T_{\rm V}^{t+\Delta t}}{\partial t} = q_{\rm in} - (q_{\rm g,B}^t + q_{\rm r,B}^t) - (q_{\rm g,S}^t + q_{\rm r,S}^t) \\ q_{\rm g,B/S}^t = \frac{1}{4} n \bar{v} \Delta E = \frac{1}{2} n k \sqrt{\frac{8kT_{\rm g}}{\pi m}} (T_{\rm V,B/S}^t - T_{\rm g}) \\ q_{\rm r,B/S}^t = \varepsilon_{\rm B/S} \sigma \left\{ (T_{\rm V,B/S}^t)^4 - T_{\rm g}^4 \right\} \\ \frac{Material Properties [11-14]}{\rho (\rm kg/m^3) - C_{\rm p} (\rm J/\rm kg-\rm K) - \kappa (W/m-\rm K) - \epsilon} \end{cases}$$

	ρ (kg/m)	$C_p(J/Kg-K)$	K (W/III-K)	5
A1	2688	905	237	0.17
Mica	2100	880	0.5	0.72
Soot	100	1000	0.05	0.95

K. DENPOH, 58th Symp. Vac. Soc. Jpn, Yokohama, 2017, 2P01

Estimating Vane Temperature (cont'd)

- Typical heat flux of sunlight is $700 1400 \text{ W/m}^2$ [15,16]
- Calculated Biot number Bi < 0.01.
- Vane is isothermal under sunlight.

K. DENPOH, 58th Symp. Vac. Soc. Jpn, Yokohama, 2017, 2P01

- Multipurpose 2D DSMC software created on MS-Excel
 - www2b.biglobe.ne.jp/~denpoh/Software/DSMC_xls/
- Gas (Air)
 - Diatomic molecule with rotational degrees of freedom
 - Molecular model: Maxwell molecule
 - Collision models: VHS model, Larsen-Borgnakke model
- Accommodation coefficients
 - Black side: $\alpha_{\rm B} = 1$ (diffuse reflection)
 - Shiny side: diffuse reflection $\alpha_{\rm S}$ + specular reflection $(1 \alpha_{\rm S})$

Model Setup in DSMC_2D.xls

• Vane length $L_a = 13$ mm, thickness $L_b = 2$ mm

□ ← ファイル	D • ♂ • ホーム	▼ D5 挿入	SMC_2D.xls [ページ レイアウト	互換モード] 数式	kz ej データ 校閲	雨	_ □	× A 共有				
Dist			£						_	F	۹.	<u> </u>
BL14		· ^	$\bigvee Jx$					~	1			-
									2	0.11		1
1 1 -		K L M N U F	2	X T Z AA AB AG A	3	AL AMAN AU AP AU	WAR AS AT AN AV AW AA	5	3	Cells		dx
2 0 1 2	34587	89012:	34557890	123455	78901234	5 6 7 8 9 0	1234587	8 9 0 1	5			uy
4 4 1						1			6	Gas Prope	erties	Molecular
s 2			11110000			1111			7			Viscosity
3 4		1 1 0 0				0 0 0 0 0 1	1		8			Internal D
8 5		11000		0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 .0	$L = 2 {\rm m}$	m	1 1 0 1 1		9	1000 1000		
10 7	1	10000				0000000	0011		10	Reference	e Values	Pressure
11 8 12 9	1 0	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	0 0 0 0 0 0 0 0 0	~ 0000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 1		11			I emperat
13 1 0	100			A 0 3 2 0			0 0 0 0 0 1		13	Initial Con	ditions	Pressure
14 1	1 1 0 0 0				, , , , , , , , , , , , , , , , , , , ,	0 0 0 0 0 0 0	0 0 0 0 0 1 1	1	14	Initial Con	Iditiono	Temperat
15 3	10000					0 0 0 0 0 0	0 0 0 0 0 0 0	1	15			# of Supe
17 4 1 18 5 1	0 0 0 0 0 0				, , , , , , , , , , , , , , , , , , , ,	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 1	16			
19 5 1	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	••••••••••••••••••••••••••••••••••••••			0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 1	17	Walls		# of Walls
21 6 1 0	0 0 0 0 0 0			0 0 0 3 2 0		0 0 0 0 0 0 0		0 0 1	18	73 8		
22 9 1 0	0 0 0 0 0 0	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	C 0 3 2 0	, , , , , , , , , , , , , , , , , , , ,		0 0 0 0 0 0 0 0	001	19	Upstream	BCs	Wall #
24 2 1 1 1 0	0 0 0 0 0 0					0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 1 1	20			Proceuro
25 2 1 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0				0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 1	22			Velocity
27 4 1 0 0	0 0 0 0 0 0	0 0 0 0 0		<u></u>		0 0 0 0 0 0	0000000	0 0 0 1	23			Torooney
28 5100	0 0 0 0 0 0	0 0 2 2 2 2 2 2 0 0 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	2200000 33000000	0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2000000	0001	24	Downstrea	am BCs	Wall #
30 7 1 0 0				<u></u>			0000000	0 0 0 1	25			Туре
31 8 1 0 0 32 9 1 0 0	000000	, , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, , , , , , , , , , , , , , , , , , , ,	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0001	26			Pressure
33 3 0 1 1 0	0 0 0 0 0			0 0 0 0 2 3 0		0 0 0 0 0 0		0 0 1 1		• A	bout	Cells Co
35 2 1 0	0 0 0 0 0 0	, , , , , , , , , , , , , , , , , , ,		0 0 0 0 2 3 0	, , , , , , , , , , , , , , , , , , , ,	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 1	準何			
35 3 1 0 37 4 1 1	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	, , , , , , , , , , , , , , , , , , ,	0 0 0 0 2 3 0 0 0 0 0 2 3 0	, , , , , , , , , , , , , , , , , , ,	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 1 0 1 1		٨		B
38 5 1	0 0 0 0 0			0 0 0 0 2 3 0				0 1	1		1	0
39 8 1 40 7 1	10000	 		0000230	, , , , , , , , , , , , , , , , , , , ,	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	1 1	2			
41 8 42 9	10000	0 0 0 0 0 0 0 0 0 0 0 0		0000230 0000230	, o o o o o o o o o o o o o o o o o o o	0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000 0000001	1		Wall #	Temper	rature (K)
43 4 0	1 1 0 0			0 0 0 0 2 3 0		0 0 0 0 0 0	0 0 0 0 0 1 1		3	1	000	000
45 2	1 0 1			0 0 0 0 0 <u>* 3</u> 0		0 0 0 0 0 0 0	0 0 0 0 1		4	2	298	2000
45 3	1	0 0 0 0 0 0 1 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, o o o o o o o	0 0 0 0 0 0	0001		6	3	348	3.000
48 5		1 1 0 0 0 0				0 0 0 0 0 0 0	0 1 1		7	4		
49 8		11000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0	1 1		8	5		
51 8		1 1 1	10000000			0 0 0 1 1 1	D_75		9	6		
52 9 57 5 0		1	11110000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1	1 1 1 1	<i>к</i> =∠3 n	ım 📃	10	7		
54 1			1	<u>, , , , , , , , , , , , , , , , , , , </u>				*	11	8		
- 30 F	Abou	t Cells	s Conds#1	L Conds	s#2 Solv	erCtrl	(+) 🕴 🖪	•	12	9	bout -	
淮備宗了						1		F 39%		* P	ibout	
ーー加川ノし」							2	3570	準備	1元]		

1	A	В	С	D	E
1			Value	Unit	Note
2					
3	Cells	d×	1.00E-03	m	Cell size in I-direction
4		dy	1.00E-03	m	Cell size in J-direction
5					
6	Gas Properties	Molecular Weight	28.970	g/mol	
7		Viscosity	1.94210E-05	Pars	@Tref
8		Internal Degree of Freedom	2		IDF = Int(2*Cp/R-5)
9					
10	Reference Values	Pressure	1.000E+00	Pa	
11		Temperature	322.031	K	
12					
13	Initial Conditions	Pressure	1.000E+00	Pa	
14		Temperature	322.031	K	
15		# of Super Particles per Cell	50		
16					
17	Walls	# of Walls	3		Max = 9
18			535		
19	Upstream BCs	Wall #	8		
20		Туре	1		1-Pressure, 2-Velocity
21		Pressure	1.000E+00	Pa	
22		Velocity	0.000	m/s	
23					
24	Downstream BCs	Wall #	9		
25		lype	1		1-Pressure, 2-Reflection Probability, 3-Perfect Vacuum
26		Pressure	1.000E-01	Pa	< Upstream Pressure
4	About O	Cells Conds#1 Conds#2	SolverCtrl	Log n	V p T Ttr Tint q Pl 🕂 : •
準備	記了				III II + 100%
	Δ	B C D	F	F	G + A
		0 0	L.		

A	В	G	D	E	F	G	1-		
	-		Probability						
Wall #	Temperature (K)	Diffuse Reflection	Specular Reflection	Sticking	TOTAL	CHECK			
1	298.000	1.000			1.000				
2	348.000	1.000			1.000				
3	348.000	0.010	0.990		1.000				
4									
5									
6									
7									
8									
9							-		
•	About Cells Co	onds#1 C	Conds#2	SolverCtrl	Lo: 🕀	∃ 4 →			
完了			=	I II	-	+ 1009	%		
	A Wall # 1 2 3 4 5 6 7 8 9 9 ▶	A B Wall # Temperature (K) 1 298.000 2 348.000 3 348.000 4 5 6 7 7 8 9 9 ▶ About Cells Co	A B C Wall # Temperature (K) Diffuse Reflection 1 298000 1.000 2 348000 1.000 3 348.000 0.010 4 5 6 7 7 7 8 9 ▶ About Cells Conds#1 C 完了	A B C D Wall # Temperature (K) Diffuse Reflection Specular Reflection 1 298,000 1.000 0.010 2 348,000 0.010 0.990 4 5 6	A B C D E Wall # Temperature (K) Diffuse Reflection Specular Reflection Sticking 1 298,000 1.000	A B C D E F Wall # Temperature (K) Diffuse Reflection Specular Reflection Sticking TOTAL 1 298.000 1.000 1.000 1.000 1.000 2 348.000 0.010 0.990 1.000 1.000 3 348.000 0.010 0.990 1.000 1.000 4 - - - - 1.000 5 - - - 1.000 1.000 4 - - - - 1.000 5 -	A B C D E F G Wall # Temperature (K) Diffuse Reflection Specular Reflection Sticking TOTAL CHECK 1 298.000 1.000 1.000 1.000 1.000 1.000 2 348.000 1.000 0.990 1.000 1.000 3 348.000 0.010 0.990 1.000 1.000 4		

K. DENPOH, 58th Symp. Vac. Soc. Jpn, Yokohama, 2017, 2P01

Example Flow Fields

- ΔT and Δp across vane are produced.
- ΔT induces thermal creep flow.
- Δp acts as area force to push vanes from black side.

K. DENPOH, 58th Symp. Vac. Soc. Jpn, Yokohama, 2017, 2P01

$\alpha_{\rm B} > \alpha_{\rm S}$ produces Torque

- Torque by Δp increases with decreasing α_s for $\alpha_s > 0.1$,
- then saturates for $\alpha_{\rm S} < 0.1$.

K. DENPOH, 58th Symp. Vac. Soc. Jpn, Yokohama, 2017, 2P01

Rotation Speed of Vanes

- Estimated by assuming torque of stationary vanes is the same as freely rotating vanes.
- Should be valid only at early state of starting rotation. [8]
- Time scale is sec-order as commonly observed.

K. DENPOH, 58th Symp. Vac. Soc. Jpn, Yokohama, 2017, 2P01

What if Glass Bulb is Heated Up? $(T_G = T_V)$

- Flow fields are uniform $(\Delta T \rightarrow 0, \Delta p \rightarrow 0)$ even for $\alpha_{\rm B} \gg \alpha_{\rm S}$.
- Apparent thermal creep flow is not induced.
- Revolution of vanes will stop.

Summary

• New hypothesis

"Vane is isothermal, and $\alpha_{\rm B} > \alpha_{\rm S}$ " has been proposed and investigated using heat transfer and DSMC simulations.

- The results have proved
 - vane is isothermal under sunlight, and
 - contrast of $\alpha_{\rm B}$ and $\alpha_{\rm S}$ can be an origin of ΔT and Δp across vane.
 - $-\Delta p$ works as an area force to push vanes.
- Also found glass bulb temperature strongly affects revolution of vanes.

References

- [1] P. Gibbs, math.ucr.edu/home/baez/physics/General/LightMill/light-mill.html, 1996.
- [2] S. R. Wilk, Optics & Photonics News, 2007, pp. 17-19.
- [3] M. Ota, T. Nakano, and M Sakamoto, Trans. Japan Soc. Mech. Engineers, B, 65 (1999), pp. 2016-2022.
- [4] M. Ota, T. Nakano, and M Sakamoto, Math. and Comput. Sim., 55 (2001), pp. 223-230.
- [5] M. Nadler, Diploma Thesis, Institute for Astronomy and Astrophysics, 2008.
- [6] L-H, Han, S. Wu, J. C. Condit, N. J. Kemp, T. E. Milner, M. D. Feldman, and S. Chen, Appl. Phys. Lett., 96 (2010), 213509.
- [7] S. Taguchi and K. Aoki, J. Fluid Mech.,694 (2012), pp. 191-224.
- [8] S. Chen,K. Xu, and C. Lee, Phys. Fluids 24 (2012), 111701.
- [9] G. Dechriste and L. Mieussens, 2015. <hal-01131756>.
- [10] D. Wolfe, A. Larraza, and A. Garcia, Phys. Fluids, 28 (2016), 037103.
- [11] SENSBEY, "各種物質の熱的性質", www.sensbey.co.jp/pdffile/materialpropety.pdf
- [12] K. Hisahara, Dr. Thesis, Gumma Univ., 2014.
- [13] チノー, "放射率表", www.chino.co.jp/support/technique/thermometers/housyaritsu.html.
- [14] 堀場製作所, "放射温度計のすべて", (2008),
 - www.horiba.com/fileadmin/uploads/Process-Environmental/Documents/thermometry.pdf.
- [15] TECHNO, "熱流束値の目安", www.techno-office.com/file/heatflux-estimate.pdf.
- [16] 圓山, "第8章伝熱問題のモデル化と設計", (2014),
 - www.ifs.tohoku.ac.jp/maru/sub/lecture/hachi2014/data/2014.10/chapter08.pdf.
- [17] www2b.biglobe.ne.jp/~denpoh/Software/DSMC_xls/

