Two-dimensional Simulation of RF CF₄ Discharge Using the Particle-in-Cell/Monte Carlo Method

Kazuki DENPOH

Central Research Laboratory, Tokyo Electron Ltd.

Kenichi NANBU Institute of Fluid Science, Tohoku Univ.

OUTLINE

• Introduction

• Modeling of rf CF₄ plasma

- Plasma reactor model
- Species and collisions
- Particle-in-Cell/Monte Carlo method

• Results

- Discharge structure
- Energy/Angular distribution functions

• Summary

Introduction

- Fluorocarbon gases(CF₄, C₂F₆, C₄F₈, ...) are widely used in plasma-assisted etching processes.
- In previous work, we were successful in 1-D simulation of rf CF₄ plasma using PIC/MC method.
 - 1-D discharge structure (density, temperature, reaction rate, etc...)
 - sustaining mechanism
 - effects of secondary electron emission and electrode spacing
- In this work, the 1-D PIC/MC code is extended to axisymmetric plasma.
 - 2-D discharge structure
 - Energy/Angular distribution functions

Modeling of RF CF₄ Plasma

- Species
 - $-CF_4$
 - electron
 - $-CF_{3}^{+}, CF_{2}^{+}, CF^{+}, C^{+}, F^{+}$
 - F^{-}, CF_{3}^{-}
- Collision
 - electron-CF₄
 - ion- CF_4
 - positive-negative ion recombination
 - $k = 5.5 \times 10^{-13}$ (m⁻³s⁻¹) - electron-CF₃⁺ recombination
 - $k = 3.95 \times 10^{-9} T_{\rm e}^{-0.5} T_{\rm i}^{-1} ~({\rm m}^{-3}{\rm s}^{-1})$

Ion-CF₄ Collision Model

- The RRK theory is adopted to describe unimolecular decomposition of activated complex.
- Elastic collision and 183 endothermic reactions (dissociation, electron detachment).

No.	Reactions			$\Delta E \ (eV)$
1.1	$CF_3^+ + CF_4$	\longrightarrow	$CF_3^+ + CF_3 + F$	5.621
1.2			$\mathrm{CF_2}^+ + \mathrm{CF_4} + \mathrm{F}$	5.843
1.3			$CF^+ + CF_4 + F_2$	7.546
2.1	$\mathrm{CF_2}^+ + \mathrm{CF_4}$	\longrightarrow	$CF^+ + CF_4 + F$	3.303
2.2			$\mathrm{CF_2}^+ + \mathrm{CF_3} + \mathrm{F}$	5.621
2.3			$CF^+ + CF_3 + F_2$	7.324
3.1	$CF^+ + CF_4$	\longrightarrow	$CF^+ + CF_3 + F$	5.621
3.2			$CF^+ + CF_2 + F_2$	7.598
3.3			$CF^+ + CF_2 + 2F$	9.198
4.1	$C^+ + CF_4$	\longrightarrow	$C^+ + CF_3 + F$	5.621
4.2			$C^+ + CF_2 + F_2$	7.598
4.3			$C^+ + CF_2 + 2F$	9.198
5.1	$F^+ + CF_4$	\longrightarrow	$F^+ + CF_3 + F$	5.621
5.2			$F^+ + CF_2 + F_2$	7.598
5.3			$F^+ + CF_2 + 2F$	9.198
6.1	$F^- + CF_4$	\longrightarrow	$CF_4 + F + e$	3.521
6.2			$F^- + CF_3 + F$	5.621
6.3			$CF_3 + F_2 + e$	7.542
7.1	$CF_3^- + CF_4$	\longrightarrow	$CF_4 + CF_3 + e$	1.871
7.2			$F^- + CF_4 + CF_2$	1.927
7.3			$CF_4 + CF_2 + F + e$	5.448

Particle-in-Cell / Monte Carlo Method

- Poisson equation: ADI with multi-grid method
- Equation of motion: Leap-frog scheme
- Collisions: Monte Carlo

Electric Field (2 ft =)

- Double-layer can be observed in both E_z and E_r .
- Electric field is strengthened around the edge of powered electrode.

Electron and Ion Densities

- CF_{3}^{+} , F^{-} , and CF_{3}^{-} are dominant ions in the discharge.
- Negative ion density is about 30 • times greater than electron density.
- Densities have maxima around the • edge of powered electrode.

F

 CF_3

10

5

GEC-51 & ICRP-4

3

2

0

0

Density (10^{16} m^{-3})

Electron and Ion Temperatures

- Bulk electron temperature is about 1.7 eV.
- High temperature region
 - Electron: around the edge of powered electrode
 - CF_3^+ : on the powered electrode
 - F^- and CF_3^- : in the middle of sheath near the powered electrode

Reaction Rates

- Discharge is sustained by electrons produced in ionization.
- Major loss process of negative ions ulletis ion-ion recombination.
- CF_3^+ - CF_4 reactions are remarkable \bullet in the sheath.

x10²⁰m⁻³s⁻¹

9.8 6.6

3.3

0.0

x10²⁰m⁻³s⁻¹

2.3

13.1

Ionization

Electron Attachment

EEDF, IEDF and Time-Averaged Potential

- Negative-ion flux onto powered electrode is 0.
- The ion energy at maximum IEDF agrees with potential fall from V_p to V_{dc} . (Plasma potential V_p is 61 V. Self-bias V_{dc} is -62 V.)

EADF and IADF

- IADF is directional as expected.
- EADF can be described as Cosine Law.

Summary

- Axisymmetric PIC/MC code for rf CF₄ discharge has been developed.
- Discharge structure is characterized by an enhanced electric field around the edge of powered electrode.
- Double-layer appears also in radial component of electric field near cylindrical reactor wall.
- We also investigate the energy/angular distribution functions of charged species arriving at the powered electrode.

